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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE CONFIDENTIAL HEPORT

CHARTS FOR ESTIMATION OF THE CHARACTERISTICS

OF A HELICOPTER ROTOR IN FORWARD FLIGHT

I - PROFILE DRAG-LIFT RATIO
FOR UNTWISTED RECTANGULAR BLADES
By F. J. Bailey, Jr. and F, B, Gustafson

SUMMARY

Charts showing the rotor profile drag-1ift ratio
are presented for a helicopter rotor operating in
forward flight and having hinged rectangular untwisted
blades. Charts are given for a range of power input
covering glides, level flight, and moderate rates of
climb. Each chart sxpresses the relation between the
1lift and the profile-drag characteristics of the rotor
for various combinations of pitch angle, tip-speed
ratio, and solidity for a particular value of a parameter
representing the shaft power input,

A particular drag curve, represented by a power
serles, was used in preparing the charts. This curve
is compared with experimental curves for typical ailr-
foils., The method by which the charts may be used in
calculating the total shaft power required for any
specific flight condition is shown by an example.

The charts indicate that, for the rotor with
rectangular untwisted blades, one effect of increasing
the shaft power input is to produce a moderate increase
in the profile drag-lift ratio. They further indicate.
that, regardless of the amount of power used, the

. optimum profile drag-1ift ratio is obtalned at the

il highest pitch angles permitted by the high section
angles of attack encountered on the retreating side of
the rotor disk,
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INTRODUCTION

Because of the pressing requirements of procurement
agencies for a rational method for evaluation of heli-
copter proposals and because of the requirements of
helicopter designers for a basis for choosing the
optimum combination of variables, it was felt that a
need existed for design charts summarizing the effect
of changes in the major variables on the characteristics
of a powered rotor in forward flight, The method of
analysis of reference 1 accordingly was used to prepare
summary charts that are generally similar to figure 3
of reference 1 but cover various amounts of shaft power
input. The present report has, for simplicity, been
restricted to the basic case of zero blade twist.

METHOD OF ANALYSIS

Parameter for shaft power input.- The primary modifi-
cation made herein iIn the method of reference 1 is the
introduction of a new parameter P/I. for rotor-shaft
power input. The symbol P represents the drag that
would absorb the same power, at the velocity along the
flight path, as the power being supplied through the
rotor shaft. The parameter P/I, is therefore equal to
the total drag-1lift ratio, or

£, (0),-6),-0), o

where
D . . .
(£> profile drag-1lift ratio
o}
‘DY . .
—) induced drag-1lift ratio
L

(%) parasite drag-1lift ratio
p

/D

\z

) drag-1ift ratio representing angle of climb;
c that 1s, rate of climb divided by velocity
along flight path
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Charts showing values of (D/L), can be calculated
- by.the method outlined in reference 1 for any desired

value of P/L by inclusion of the shaft-torque coeffi-
cient -

I '
26, P [/ 2¢
~Q ~a ( T
o T 1* VW aa
where
Cq torque coefficient
c solidity; ratio of total blade area to swept-
disk area
a slope of 1lift coefficient against section angle
of attack (radian measure)
uw tip~-speed ratio
Cp thrust coefficient

in the equation expressing the torque equilibrium of the
rotor. (See section entitled "Applicg}ion of Theory" in

v

rsference 1,) The expression for ?E? is given in

equation (1l,) of rsference 1.

Rotor charactsristics.- The sample rotor for which
the charts presented herein were prepared was assumed to
have hinged rectangular untwisted blades. A valus of
the mass factor y of 15 was ussd, The charts are con-
sidered applicable to rotors having values of « ranging
from 0 to 25,

Alrfoil characteristics.- The airfoil characteristics
assumec 1n reference I were used in preparing the charts.
The equation representing the section profile-drag coef-
ficient is

g, = 0.0087 - 0.0216a, + 0.L00a 2
where Qo 18 the sectlon angle of attack. The corre-

sponding profile-drag curve is shown in figure 1 with
experimental curves for several typical airfoils.
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Limits of validity of theory.- As was explained in
reference 1, calculations based on the representation of
the airfoil drag characteristics by & power series of”
three terms become optimistic when high blade angles are
encountered over too large a portion of the rotor disk.
It should be noted, however, that very little improvement
in (D/L), 1s to be expscted by operating beyond the
conditions to which the theory is limited, as a result
of the rapidity of growth of the region of high angle
of attack. This fact is readily demonstirated by
graphical treatments for both autogiro and helicopter
cases.

In the example given for the auvtogiro 1in refer-
ence 1, a satisfactory limit was found to be the con-
dition in which a blade element at an azlmuth angle of
270° and having a relative velocity uqQQR equal to four-

tenths the rotational tip speed reached an angle of
attack of 11.75%° The use of this locus llns has been
retained in the present example but, for convenience,
the angle of attack has been increased to an even 129,
Becauce the limiting angle of attack depends upon the
section and upon the Reynolds number and Mach nunber,
an additional locus line has been included for an angle
of attack of 16°. For values of P/L greater than
about C.1, the highest blade angles are encountered at
tho blade tip instead of inboard; hence, locus linses
for angles of attack of 120 and 16° at the blade tip, at
an azimuth angle of 2700, are substitubted for those for
Up = OJi whenever the tip locus lines fall above those

f = N
for wu, Ol
In the charts presented herein, the locus lines for

the conditions for which a blade element at an gzimuth
angle of 270° with a relative velocity u,{R equal to

four~tenths the rotational tip speed reached a specified

angle of attack are designated by the symbol

a o. Similarly, the locus lines for the
(up=.) (2700) i

conditions for which the blade tip at an azimuth angle
of 270° reached a specified angle of attack are desig-
nated by the symbol a(l.O)(27OO)'

RESULTS

The charts of (D/L), obtained for the sample
rotor are shown in figure 2. The chart for P/L = 0,
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that is, for autorotation, 1is the same as figure 3
of reference 1 except for the choice of limit lines. A
value of P/L of 0.2 may be tonsidered 4s typlecal of-
present helicopters at or near cruising speed. Values
lower than 0.2 correspond to cleaner craft or to a
power-on glide. Higher values correspond to less stream-
- 1llned craft or to a positive angle of climb; the highest
value covered by the present charts,  P/L = 0.5, may be
viewed as representing a typlcal helicOpter climbing at
an angle of approximately 159 or 20°

DISCUSSION

Inspection of the charts reveals that the effect
» of increasing power on the optimum (D/L)o, a8 indi-
cated by the lowest points on the limit lines, is to
produce a moderate but progressive increase 1n the
magnitude of the vaiue of (D/L), and to shift the
optimum tip-speed ratio toward 1ower values., It may
be remarked that similar charts for twisted blades
show a relatively insignificant increase in (D/L)e,
up to values of P/L of 0.2 or higher.,

As has already been noted, for both helicopter and
autogiro conditilons, the optimum (D/L)y 1s indicated
a3 being obtained at the highest pitch angles permitted
by the section angles of attack encountered on the
retreating side of the rotor disk, The choice of pitch
angles materially lower than those corresponding to the
locus lines for an angle of attack of 129 results in

extreme inefficiency.
SAMPLE PERFORMANCE CALCULATION

Power absorbed by main rotor.~ In order to illustrate
the manner 1n which the charts may be used to estimate
the power required by a helicopter under a given set of
conditions, an example has been included.

Assume a helicopter to be operating in level flight
at sea level under the following conditions:

8%
Forward speed, feet per SeCONA.ue.sesenceccncsonnseeee 30 4@04?
Tip-—Speed I’atio, 9% T 002 4
Disk loading, pounds per square foot .....icveieeeee 2.5 GSA%
' S

EE— e 2
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chovd 2.2 /

gross weight, pounds .a...............ﬁ......,..... 31,0

Rotor radius, FEet c..vesescersssconefoscsccccnscnssas 20
Blade plan fOIM eeeevessscoessscssaofosess.s Rectangular
Blade TWIST seeevevensonnacecsscssetossssacsnssnses NONE
SOTLAIET eeveeeneennnconseennnesosafoccocaasasosasas 0,07
Parasite-drag area, square feet , R L 15

FPor these assumptions,ifEL =ﬂ0.32 and %% = L.70.

In order to obtain a first afpre%%ma ion to (D/L), for
use in equation (1), P/I. is assumed to be 0.2. Fig-

ure 2(e) then gives a value of 0,086 for (D/L)y at the
intersection of the curve for pu = 0,2 with the line for

Cr _ N .
== ly.70. The value of (D/L);, as indicated in refer=
ence 1, is simply Cp/4 or 0,082. The parasite drag-
1ift ratio is :
(D) _ 0.001189 x 15 x (80)%

b

L 3110

= 0,036

Since the rate of climb is assumed zero, the value
of P/L from equation {1) is .
P

T = 0.086 + 0.082 + 0,036 + O

= 0.204

As a second approximation, the value of (D/L)O may
be obtained by interpolation between the charts for

.L13= 0.20 and for %= 0.25. The value so obtained is,

within the limite of accuracg in reading the charts, equal
to the original value of 0.086 and no further approxima-
tions are necessary.

The total rotor-shaft power required for the specified
condition may now be calculated as

0.204 x 31,0 x 80
550

Power absorbed by auxiliary rotor.- The charts may
also Be used to estimate the power absorbed by the tail
rotor.

Assume that the torque of the main rotor is being

coumteracted by an articulated auxiliary rotor having
the following characteristics:

Blade plan FOPM ..ceieesseassasesasssessssssss ReChbangular
Blade tWist S 6 ¥ 8 ¢ 06 8 % 5 " B8 23 9 68 s 4 © 9 9 8 6 8 0 8 0 0 6 4 PO S S O None
Solidity 9 ® # & 0o 8 2 6 @ P & s S a0 5 9 & ¢ 6 8 0 B G ¢ " S8 s e P00 S O.lo

= 93,2 horsepower
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Spindle angle,  d, d8ZrEES .ve-eesescccccaceccssaneas O
“Distance between spindle.and.main.. .. ]

rotor axis, feet ....iiiiiiirecoesnoenscornccnnesnan 22
Radills’ feet ...-o-lo-oc'-.-oao'-loonoo.ono-o_nooooou.oc
Tip-speed l"atio 6 6 8 0 5 5 6 08¢ 068 F ST ESEGECEEOIPLETOEOSIEOGIEOBDBROERSLOSEOSES 0.2

The tail-rotor thrust, based on the main-rotor power
already calculated, is 102.7 pounds and the corresponding
thrust cosfficient Cq 1s 0.00536. The inflow-velocity
factor A may be obtained from equation (8) of refer-
ence 1 . ‘

Cp

A
o =& + —=
o 2@2

Substitution of the valuss for the present case gives a
value of A = -0,013l.. By using a lift-curve slope a
of 5,73 per radian, substitution of this value of M in
equation (6) of reference 1 gives a blade pitch angle 8
of L.7°,

In order to permit the use of the charts of figure 2,
it is convenient to calculate the value of CL/b from the
relation

Cr, 2Cm
5T L2
Gu
CL N
which gives a value of === 2,68. The value of P/L

corresponding to the specified combination of values g,
O, and CL/b is found by interpolation betwsen fig-

ures 2(c) and 2(d) to be 0.138.
The auxiliary=-rotor shaft power is then

0.138 x 102.7 x 80
550

= 2.1 horsepower

Since the auxiliary rotor may also be producing a drag,
the total power charged to torque counteraction should
be calculated from the sum of the. values of ‘(D/L)O .and

(D/L)y+ The value of (D/L), at P/L = 0.138, by
interpolation from figure 2, is 0.120, The value of

S
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N
o] fwr)
p—
|

Q
LS

Lo
N
268 2.1

0.
Iy

i
O a

= 0.067

The total drag-lift ratio is then 0.187 and the corre-
sponding power is 2.8 horsepower. The difference between
the two values of power results from the drag on the
auxlliary rotor and hence must be supplied through the
main=1rotor shaft; the revised value of main-rotor shaft
power is then 95.9 horsepower,

If a particularly rigorous treatment is desired,
the difference between the auxiliary-rotor values of
(D/L)o + (D/L); and P/L should be converted into a

drag-1lift ratio bassd on the main-rotor 1lift, that is,

102.
0.0lL9 ?Eﬁﬁ; or 0.002 for the present case. This
value should then be added to the original value of
(D/L). used in the main-rotor calculations, and the

entire procedure repeated, Examination of the problen
has shown, however, that the differences so obtained
are negligible for normal ranges of variables, since
the rotor profile drag-1lift ratio is not particularly
sensitive to the value of P/L used.

CONCLUSIONS

1, The profile drag-lift ratio of a power-driven
rotor in forward flight can be completely specified for
various combinations of pitch angle, tip-speed ratio,
and solidity by a series of charts for different values
of power input. On the charts, the profile drag-1lift
ratio is plotted against the ratio of 1ift coefficient
to solidity for specified values of pitch angle and tip-
spead ratio.

2., For a rotor with rectangular untwisted blades,
the theoretically derived charts indicate that one
effect of increasing the shaft power input is to produce
.a moderate increase In the profile drag-lift ratio.

3. Regardless of the amount of power used, the
optimum profile drag-1ift ratio is obtained at the
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_highest pitch angles permitted by the high section angles

of attack encountered oh the retreating side of the rotor
disk.

‘Langley Memorial Aerconautical Laboratory

National Advisory Committee for Aeronautics
Langley Fleld, Va,
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